Printed Page: 1 of 2 Subject Code: REE501

B. TECH (SEM-V) THEORY EXAMINATION 2020-21 **ELECTRICAL MACHINES-II**

Time: 3 Hours

Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

Roll No:

SECTION A

1. Attempt all questions in brief.

a.	Justify the reason of connecting armature winding of 3 phase alternator in star		
b.	Summarize the conditions to be fulfilled for parallel operation	of	two
	alternators.		
c.	Draw and explain V-curves for Synchronous motor.		
d.	Why Rotor core-losses are negligible in induction motor?		
e.	Illustrate the need of starter for starting the induction motors.		
f.	Evaluate the effect of rotor resistance on Torque-Slip characteristics.		
g.	Explain equivalent circuit of single-phase Induction motor.		

SECTION B

2. Attempt any *three* of the following:

a.	Evaluate armature reaction for purely resistive, inductive and capacitive load
	conditions. Explain with the help of suitable diagrams.
b.	Why the synchronous motor does not have a starting torque? Explain briefly.
	Describe the working principle and methods of starting a synchronous motor.
c.	Establish the torque equation of three phase Induction motor. Also find starting
	and maximum torque of the machine.
d.	Name the various method of starting the poly-phase induction motors and
	evaluate the star-de ta method of starting in details.
e.	Evaluate the "Double field revolving theory" and show that a single-phase
	induction motor is not self-starting. Draw the torque-slip curve based on this
	theory. No

SECTION C

Attempt any one part of the following: 3.

7 x 1 = 7

(a)	Justify the terms synchronous impedance and voltage regulation	of	an
	alternator. Examine the synchronous impedance method of determ	nining	
	voltage regulation of an alternator.		
(b)	Illustrate, with neat sketches, the constructional difference between cylindrical		
	and salient pole rotors used in large alternators and explain armature reaction		
	at (i) unity power factor (ii) zero leading power factor (iii) zero lagging power		
	factor. Draw the relevant phasor diagrams.		

4. Attempt any *one* part of the following:

 $7 \ge 1 = 7$

(a)	Summarize the Blondel's two reaction theory for Salient pole synchronous
	machine.
(b)	Determine the expression for power developed by 3-phase alternator having (i)
	salient pole (ii) smooth cylindrical rotor.

Download all NOTES and PAPERS at StudentSuvidha.com

 $2 \ge 7 = 14$

 $7 \ge 3 = 21$

Download all NOTES and PAPERS at StudentSuvidha.com

5. Attempt any *one* part of the following:

(a)	Develop an equivalent circuit of three induction motor and describe in detail.
(b)	A 37.3kW, 4pole, 50Hz induction motor has friction and windage losses of
	3320 watts. The stator losses equal the rotor losses. If the motor is delivering
	full load power output at a speed of 1440 rpm, calculate, (i). Synchronous
	speed, (ii). Slip (iii). Mechanical power developed by the motor, (iv). Rotor
	copper loss, (v). Power transferred from stator to rotor, (vi) Stator power input,
	(vii). Efficiency.

Roll No:

6. Attempt any *one* part of the following:

(a) How is it possible to obtain a high starting torque and good running performance with a double cage induction motor? Compare a double cage induction motor with a deep bar induction motor.
(b) Analyze the phenomenon of cogging and crawling in a three-phase induction motor.

7. Attempt any *one* part of the following:

(a)	Compare the working principle of (i) split phase (ii) capacitor start	(iii
	capacitor start and capacitor run single phase induction motor with the help of	
	neat sketches.	
(b)	A 220 V, 1 phase induction motor give the following test results:	
	Blocked rotor test: 120 V 9.6 A 460W	
	No load test : 220V 4.6 A 125 W	
	The stator winding resistance is 1.5 Ω and during blocked rotor test, the starting	
	winding is open. Determine equivalent circuit parameters.	
	tombold from the second	

PAPER ID-310575

Printed Page: 2 of 2 Subject Code: REE501

. . .

 $7 \ge 1 = 7$

 $7 \ge 1 = 7$

7 x 1 = 7